J Intell Inf Syst (2007) 28:105-131
DOI 10.1007/510844-006-0005-0

Dynamic management of UDDI registries in a wireless
environment of web services: Concepts, architecture,
operation, and deployment

Zakaria Maamar - Hamdi Yahyaoui -
Qusay H. Mahmoud

Received: 19 December 2003 / Revised: 15 May 2005 /
Accepted: 20 July 2005 / Published online: 28 December 2006
© Springer Science + Business Media, LLC 2006

Abstract This paper presents mechanisms for the dynamic management of the con-
tent of several Universal Description, Discovery, and Integration (UDDI) registries.
These mechanisms are deployed in the context of a wireless environment of Web
services. By content, it is meant the announcements of Web services that providers
submit to a UDDI registry. Unlike other initiatives in the Web services domain
that consider a single UDDI registry and a wired communication infrastructure, this
paper is concerned with the fact that: several UDDI registries are deployed, there is
no wired communication infrastructure between the UDDI registries, and absence
of a centralized component for coordinating the UDDI-registries. The solution
presented integrates users and software agents into what we call messengers. Initially,
software agents reside in users’ mobile devices and cache a description of the Web
services that satisfy their users’ needs. Each time a user is in the vicinity of a UDDI
registry, her software agent interacts with that registry, so the details stored on Web
services are submitted.

Keywords Web service - UDDI - Agent - Wireless - Security

1 Introduction and motivation

Web services are emerging as a major technology for achieving automated inter-
actions between distributed and heterogeneous applications. A Web service is an

Z. Maamar (X))
College of Information Technology, Zayed University, Dubai, UAE
e-mail: maamarz@yahoo.com

H. Yahyaoui
Computer Sciences and Software Engineering Department, Laval University, Quebec, Canada

Q. H. Mahmoud
Department of Computing and Information Science, University of Guelph, Guelph, Canada

@ Springer

106 J Intell Inf Syst (2007) 28:105-131

accessible application that other applications and humans can discover and trig-
ger (Benatallah, Sheng, & Dumas, 2003). Various technologies back the deployment
of Web services including WSDL, UDDI, and SOAP (Curbera et al., 2002). Unlike
other research initiatives in the field of Web services, which consider a single
UDDI registry and assume a wired and stable communication infrastructure, we are
particularly concerned with the following aspects:

— Several UDDI registries are deployed across various regions. A registry is
aware of the existence of other peers, but does not perform any exchange
of information on its content with these peers. The exchange illustrates the
mechanisms that are intended to be developed in this research. The UDDI
registries may belong to different institutions, have different usage policies, and
pose different requirements on acceptable announcements and retrieval requests
of Web services.

— There is no pre-defined communication infrastructure between the distributed
UDDI registries. An infrastructure of type wired or wireless' for direct inter-
actions can be set up after assessing the importance of exchange between the
UDDI registries. In addition, an UDDI registry may be withdrawn if its owner
decides so.

— Absence of a central component that is responsible for managing and coordi-
nating the UDDI registries. In a similar configuration, it is noted in Penserini,
Liu, Mylopoulos, Panti, and Spalazzi (2003) that a central authority constitutes
a bottleneck and may completely break down the system. On one hand, each
registry is independent in defining the announcements of providers it accepts,
and the retrieval requests of users it satisfies. The definition of what to accept
and what to satisfy is based on a set of what we denote by UD DI registry-defined
policies. On the other hand, each provider is independent in selecting the UDDI
registries to whom it submits its announcements of Web services. The selection
of where to announce is based on a set of what we denote by provider-defined
policies.

In a Web services running-scenario, an UDDI registry takes part in two oper-
ations. The first operation is to receive the announcements of the description of
Web services (also called services in the rest of this paper) from providers. The
second operation is to search the registry for the services that satisfy users’ needs.
Examples of needs are multiple like hotel booking and car rental. The search consists
of identifying the relevant services and indicating who offers them so they can
be triggered after a potential composition (Casati, Shan, Dayal, & Shan, 2003).
It is accepted that the advantages of Web services are due to their capacity to
be composed into high-level business processes (composite services development).
However since the announcements of services are submitted to distributed UDDI
registries, this definitely leads into a different content among the registries. Thus, it is
deemed appropriate to develop mechanisms for supporting the exchange of content
between distinct UDDI registries.

Targeting the dynamic management of multiple UDDI registries presents some
similarities with the well-known problem of information replication over a set of

I'Low bandwidth, poor reliability, and absence of coverage feature this infrastructure.

@ Springer

J Intell Inf Syst (2007) 28:105-131 107

distributed information sources. An immediate solution to our UDDI registry-
dynamic management is to flood the communication infrastructure with the new
content of any UDDI registry, which has lately been subject to changes. Changes
in UDDI registries may become frequent as the number of Web services continues
on growing. While the flooding fits well a wired context, the lack of reliable and
permanent connections in a wireless context is a major obstacle to the flood-
ing. Karakasidis and Pitoura (2002) have observed that the traditional database
approaches of collecting, caching, and indexing data of interest in monolithic contexts
becomes obsolete in global computing contexts. Hristova, O’Hare, and Lowen (2003)
have made the same observation, too. Consequently, another alternative is required
to the dynamic management of UDDI registries. In this paper, we discuss how users,
while roaming, will be the vehicle of supporting the content exchange between the
UDDI registries. This support is done in a transparent way because of the use
of Software Agents (SAs). A SA is an autonomous entity that acts on the user’s
behalf, makes decisions, interacts with other agents, and migrates to distant hosts if
needed (Jennings, Sycara, & Wooldridge , 1998). We discuss the rationale of agents
in Section 2.

In this paper, each UDDI registry is associated with a structure known as cluster of
Web services. Several clusters are made available across the wireless communication
infrastructure, so providers can connect to the most appropriate one using various
criteria such as cluster’s proximity and workload status. The connection between
providers and clusters is of type wired. However, for tracking purposes a provider
cannot connect to more than one cluster, which means a provider cannot announce
in the UDDI registries of multiple clusters. The cluster in which a provider posts its
services for the first time is called master. Interesting is the situation where providers
have similar services but respectively announces their services in separate UDDI
registries. Benatallah et al. (2003) explain the notion of service similarity with the
concept of service communities where alliances are formed among a potentially large
number of services performing the same operation types. Unless some appropriate
exchange mechanisms are set, an UDDI registry would never be aware of the
existence of similar services in other registries. Besides that, for a user wishing to
satisfy her needs by triggering or composing appropriate Web services, she should be
given the opportunity to consider all the existing services regardless of where they are
announced. These two basic cases motivate the importance of supporting a content
exchange between UDDI registries.

A part of our solution to the dynamic management of UDDI registries relies
on users who are mobile and have mobile devices (Abowd et al. use the term
smart phone to quality the latest mobile devices and report that over a billion
mobile phones exist today (Abowd, Iftode, & Mitchell, 2005)). The other part of the
solution relies on software agents. It is accepted that agents are suitable candidate
for performing the composition of Web services on behalf of users (Huhns, 2002;
Kuno & Sahai, 2002). Thus, we integrate users and software agents into what we
call messenger. While residing in the mobile device of a user, the software agent
caches a description of the list of Web services that are involved in the satisfaction of
one of the user’s needs and appends this description with various details indicating
for example the UDDI registry from which the agent has collected information on
these,WebsevicessOnbehalf.of providess; users announce services in various UDDI
registries to be associated with clusters denoted by slaves. Because users have mobile

@ Springer

108 J Intell Inf Syst (2007) 28:105-131

devices, mobile support stations manage these devices in terms of identifying their
physical location and handling their incoming and outgoing messages/calls (Maamar,
Ben-Younes, & Al-Khatib, 2003). A mobile support station communicates with
mobile users, within its radio coverage area known as wireless cell. For the needs
of this research, each cluster of Web services is attached to a mobile support station.
Therefore, When a user enters a new cell (i.e., under the coverage area of a new
mobile support station) an exchange of information occurs between the agent of the
user and the UDDI registry. This exchange enables to a certain extent updating this
registry’s content. It should be mentioned at this stage that a user does not have to
visit all the clusters. Her association with a mobile support station depends on her
route to various places like work, mall, etc.

Because a UDDI registry receives information on Web services from two indepen-
dent sources namely providers of Web services, and agents of users, we decompose
the services into two types: internal and external. Internal services are announced
in a UDDI registry of a master cluster (providers take care of the announcements).
This registry has a full control over the internal services by guaranteeing for example
their QoS. And external services are always announced in an UDDI registry of a
slave cluster (agents take care of the announcements). This registry cannot guarantee
for example the QoS of the external services and their availability in their respective
provider host for triggering purposes. External services constitute one of the chal-
lenges of managing UDDI registries.

In this research, the exchange of the UDDI registries’ content does not target a
total replication. A total replication between the UDDI registries might happen but
is subject to the following two factors:

— The route of users: users are not forced to visit all the clusters so registries are
fed with a new content. The participation of users in the dynamic management
of the UDDI registries is not considered as a burden on them. Because of the
diversity of the routes of users, the update of a UDDI registry takes place each
time these users are associated with a new support mobile station of a cluster and
thus, in contact with a new UDDI registry.

— The different policies that exist like UDDI registry-defined policies and
provider-defined policies. For instance, each registry is independent in defining
the announcements of providers it accepts and the retrieval requests of users it
satisfies. Plus, each provider is independent in selecting the UDDI registries to
whom it will submit its announcements of Web services.

The rest of this paper is organized as follows. Section 2 first, outlines the why of
using software agents in the dynamic management of UDDI registries, and second
overviews Web services and UDDI registries. Section 3 presents the agentification
process of a wireless environment of Web services. Section 4 presents the security
of the UDDI registries. Section 5 discusses the implementation work of this envi-
ronment of Web services. Future and related work are outlined in Section 6 and
Section 7, respectively. Finally, Section 8 concludes the paper. It should be noted, at
this stage of the paper, that the lack of computing resources that feature some mobile
devices (which is not the case with the latest developments in the field) does not
prevent;these.devices- fromsstoringsinformation as there will be no major computing
running over them.

@ Springer

J Intell Inf Syst (2007) 28:105-131 109

2 Preliminaries

Software Agents. It is a piece of software that autonomously acts to carry out tasks
on the users’ behalf (Jennings et al., 1998). In agent-based applications, it is accepted
that users only need to specify high-level goals instead of issuing explicit instructions,
leaving the decisions of how and when to their respective agent. A software agent
exhibits a number of features that make it different from other traditional compo-
nents including autonomy, goal-orientation, collaboration, flexibility, self-starting,
temporal continuity, character, communication, adaptation, and mobility. It should
be noted that not all these characteristics need to embody an agent.

Besides the availability of several approaches and technologies related to the
deployment of Web services (e.g., SOAP, UDDI, Salutation), they are all tailored
to a context of type wired. In a similar context, the computing resources are fixed
and connected through a permanent and reliable communication infrastructure. The
application of these approaches and technologies to a context of type wireless is
not straightforward. Indeed, major adjustments are required because of multiple
obstacles ranging from potential disconnections of mobile devices and unrestricted
mobility of persons to power scarcity of mobile devices and possibility of capturing
the radio signals while in the air. These obstacles highlight the suitability of software
agents as potential candidates to overcome them. First, a SA is autonomous. Thus it
can make decisions on the user’s behalf while this one is disconnected. Second, a SA
can be mobile. Thus it can move from one host to another. A continuous network
connectivity is not needed (Bagci, Petzold, Trumler, & Ungerer, 2003; Bellavista,
Corradi, & Stefanelli, 2002). Third, a SA is collaborative. Thus it can work with other
agents that identify for example providers of Web services. Last but not least, a SA
is reactive. Thus it can monitor the events that occur in the user’s environment, so
relevant actions can be promptly taken.

Web service. Benatallah et al. (2003) define a Web service as an accessible application
that other applications and humans can discover and trigger. Plus, Benatallah et al.
associate the following properties with a Web service: independent as much as possi-
ble from specific platforms and computing paradigms; developed mainly for inter-
organizational rather than intra-organizational situations; and easily composable
(i.e., its composition with other Web services does not require the development of
complex adapters).

Universal Description, Discovery, and Integration. The UDDI specifications define
a way to publish and discover information on Web services. At a conceptual level,
the information provided in a UDDI business registration consists of three compo-
nents (uddi.org., 2000). First, the white pages component includes address, contact,
and known identifiers. Second, the yellow pages component includes industrial
categorization based on standard taxonomies. Finally, the green pages component
includes the technical information about services that a business exposes. At a
business level, the UDDI business registry can be used for checking whether a
given partner has particular Web service interfaces, finding companies in a given
industry with a given type of service, and locating information about how a partner
onintendedypartnershasiexposedrasWebyservice. The objective is to get aware of the
technical details required for interacting with that service.

@ Springer

110 J Intell Inf Syst (2007) 28:105-131

3 Agentification of a wireless environment of web services
3.1 Agent-based deployment

The agentification of the dynamic management of the UDDI registries resulted in the
identification of three types of agents: provider-agent, UD DI-agent, and user-agent.
Figure 1 illustrates the different agents according to the clusters of Web services,
the UDDI registries, the mobile support stations, and last but not least the wireless
communication infrastructure. Usually, the coverage areas (represented by circles in
Fig. 1) of the mobile support stations overlap. However to keep the figure clear the
overlapping is not represented. Because the clusters of Web services are wirelessly
connected (dashed lines in Fig. 1), a continuous and reliable exchange of the content
of the different UDDI registries cannot take place. Figure 1 also depicts the notion
of messenger, which is in fact the couple (user,user-agent) on the move. Users with
their mobile devices are always under the management of a particular mobile support
station. When a user moves to a different place, which is outside the coverage area of
a mobile support station, a handover occurs between this station and the new mobile
support station that covers this place. In the following, the rationale and role of each
agent are presented.

A provider-agent identifies a provider (i.e., a business) that intends to post its
Web services on the UDDI registries of the multiple clusters. However a provider is
only authorized to connect to one cluster so it can use its UDDI registry. We recall
that this cluster is known us master. The services announced in the UDDI registry
of a master cluster are labelled as internal. This labelling has several advantages
as it helps in identifying the UDDI registry where the services are announced for
the first time, knowing the location of the providers to whom the services belong,
denying all the operations of user-agents that aim at updating the description of
the services, and naming the UDDI-agent that ensures that the parameters of the
services (e.g., execution cost, execution time, QoS) are met during their execution.

Since a provider only announces its Web services in one UDDI registry, mes-
sengers take care of the UDDI registries of the remaining clusters. We recall that

Cluster,
of Web services

Cluster,
of Web services

Retrievals
Announcements

Retrievals
Announcements

Legend

Ve o\
@ provider-agent UDDI-agent @ User-agent é Mobile support station —>= Wired connection - - > Wireless connection
N/

Fig. 1 Agentification of distributed UDDI registries

@ Springer

J Intell Inf Syst (2007) 28:105-131 111

if trustworthiness: (provider agent;, uddi_registry;) < 0.5
then user _agent: not(announce(web_service, in(uddi_registry;)))

Fig.2 Sample of a provider-defined policy

these clusters are known as slave.> For announcement purposes in slave clusters,
the messengers need to comply with certain policies as it is going to be explained
in the next paragraphs. The services posted on the UDDI registry of a slave
cluster are labelled as external. This labelling has several advantages as it helps
in (a) indicating that a third entity (i.e., a certain messenger) has announced the
services, (b) informing that the services can always be subject to unpredicted changes,
and (c) stating that the UDDI-agent cannot guarantee the execution parameters of
the services. Wired connections support the interactions between provider-agents
and UDDI-agents (Fig. 1). These interactions are for announcing new services or
for updating or withdrawing the services already published. Regardless of the type
of Web services whether internal or external, the labelling supports in general first,
their identification and second, their tracking at the level of the UDDI registries. In
addition, the labelling supports the validity of the announcements of messengers, so
contradictory information are avoided (Section 3.2).

Because users are heavily engaged in announcing Web services, the agreement
of the respective providers of these Web services is required. For various reasons
like privacy (e.g., a provider does not want to announce all its services in a certain
UDDI registry), security (e.g., a provider is afraid that its announcements of services
will get altered in a certain UDDI registry), and trustworthiness (e.g., a provider is
not confident in the security mechanisms of a certain UDDI registry), a provider has
to clearly state in the description of a Web service submitted to a UDDI registry
of a master cluster whether this service can be announced in the UDDI registries
of slave clusters. The statements of a provider are done through a set of policies,
which are appended to the announcements of services. The statements are meant
for the messengers that will be roaming the different clusters. It should be noted
that all the services of a provider have to be posted on at least one cluster, which
is in that case the master cluster. Figure 2 contains a sample of a provider-defined
trustworthiness policy: provider-agent; forbids to any user-agent the announcement
of its Web services in UDDI-registry;, if the trustworthiness value between this
provider and this UDDI registry is less than 0.5.

Trustworthiness value calculation. The trustworthiness value of a provider of Web
services towards an UDDI registry is defined by the number of times an UDDI
registry suggests with success the external services of a provider (announced as
internal services in other UDDI registries) to be involved in a composition process
vs. the number of composition processes that are devised to satisfy users’ needs (by
success, it is meant services being triggered). It is noted that a UDDI-agent does
not have a full control over the external services. It may happen that a service is
announced in a UDDI registry of a slave cluster, but its provider has pulled out the
service for maintenance.

2Because a cluster is seen from a provider perspective, it can be at the same time master and slave.

@ Springer

112 J Intell Inf Syst (2007) 28:105-131

A user-agent resides in a mobile device (e.g., cell-phone, personal digital assistant)
of a user constituting both a messenger when they move (Fig. 1). The main role
of a user-agent is to satisfy its user’s needs (e.g., car rental, hotel booking) after it
identifies and selects the relevant Web services with the help of an UDDI registry.
To this purpose, the user-agent initiates interactions with the UDDI-agent of a
UDDI registry. The consideration of a specific UDDI registry depends on the current
location of the user with regard to the mobile support station, which is responsible for
managing her mobile device. The composition of the services may also be required
to satisfy certain users’ needs (e.g., travel planning requiring flight reservation, hotel
booking, attraction search, user notification services) but this is beyond this paper’s
scope. Once the services are identified and triggered for execution, the user-agent
caches in the user’s mobile device various information like the identifier of the
services, the UDDI registry with whom the user-agent has dealt with in order to
obtain the services, and the providers of services and their location according to
the master clusters. A refinement of the information that user-agents store is given
in Section 3.2. This information can be potentially announced to distinct UDDI
registries of slave clusters for further processing. This can be done after verifying the
authorization policies of the announcements (Fig. 2). A user-agent is not authorized
to update the details of any service that is announced as internal in a master cluster.

By default, users are always attached to one cluster because of the mobile support
station. The type of cluster whether master or slave is not relevant. Whenever a
user moves to a different place that is outside the coverage of the current support
station, her mobile device becomes under the management of a new mobile support
station covering this place. This means that the user-agent can now start dealing with
the UDDI registry of the new cluster of Web services. The user-agent keeps track
of all the clusters it has visited, its last date of visit, and the kind of information it
previously submitted to their respective UDDI registry. If the user-agent notes that
the information it caches is beneficial to the UDDI-agent (what it was submitted vs.
what it can now be submitted), a wireless communication is established between both
agents upon user-agent’s request. The rationale of the communication is to transfer
the information on the Web services to the UDDI registry so its content can get
updated. The transfer has to obey to three categories of policies: provider-defined,
UDDI registry-defined, and user-defined.

1. Provider-defined policies: the purpose of these policies is explained in the
description of a provider-agent. A sample of a provider-defined policy is given in
Fig. 2.

2. UDDI registry-defined policies: the purpose of these policies is to clarify for a
UDDI-agent whether to accept announcements on external services and from
which sources. A source can be either a user-agent or an UDDI registry. Figure 3
is a sample of a UDDI registry-defined policy: UDDI-agent; will not accept
the announcements on Web services from any user-agent if this user-agent has
collected information on these services from UDDI-registry;.

if source: (user_agent, web_service) = "uddi_registry;"
then—uddiagentsi——not{acceptlweb service, from (user agent)))

Fig. 3 Sample of a UDDI registry defined-policy
@ Springer

J Intell Inf Syst (2007) 28:105-131 113

if authorization: (user_agent;, uddi_registry;) = "yes"
then wuser_agent;: announce(web_service, in(uddi_registry;))

Fig. 4 Sample of a user-defined policy

3. User-defined policies: the purpose of these policies is to define for a user-agent
the UDDI registries of slave clusters where it can submit its announcements of
external services. Figure 4 is a sample of a user-defined policy: user-agent; is
authorized to announce its external services to UDDI-registry ;.

A UDDI-agent is deployed on top of an UDDI registry. The UDDI-agent
interacts through wired connections with provider-agents for their announcements
of services of type internal. In addition, the UDDI-agent interacts through wireless
connections with user-agents for their retrieval requests of services and announce-
ments of services of type external as well. The details on these interactions and their
related policies have been explained above.

With regard to managing the UDDI registries, it may happen that the announce-
ments of Web services are not free-of-charges mainly for external services. In that
case, a provider can specify a policy to avoid the posting of services in all the
UDDI registries that request for charges. In Fig. 5, the policy states the following:
if provider-agent; understands that its announcements of Web services through user-
agents will be charged in UDDI-registry;, then this provider-agent will give up
declaring in this registry. Furthermore, it may happen that for the need of refreshing
the content of a UDDI registry a UDDI-agent deletes the external services from
its registry without notifying the respective providers. The opposite cannot apply to
the internal services as the requests of deletion only originate from their respective
providers. Besides the various operations that a UDDI-agent takes care, this agent
verifies the announcements so contradictory information in the content of a UDDI
registry are discarded.

3.2 Messenger-based operation

We decompose the messenger operation of the wireless environment of Web services
into three parts (Fig. 6). The first part consists of storing the description of the
Web services that satisfy the needs of users. The second part, which is the core
of this paper, consists of updating the UDDI registries according to the messenger
approach. Finally, the third part consists of identifying the Web services that satisfy
the needs of users considering the fact that several UDDI registries with different
contents are in operation. In what follows, the second part is detailed, whereas the
first and third parts are only outlined.

First of all, we assume that a description of the Web services that satisfy users’
needs is already stored in their mobile devices (Part 1). This description was briefly

if charges: (provider _agent;, uddi_registry;) = "yes"
thengaiisermagentipmnotGannouncetweb_service, in(uddi_registry;)))

Fig. 5 Sample of a provider defined-policy
@ Springer

114 J Intell Inf Syst (2007) 28:105-131

Fig. 6 Decomposition of the ' !

messenger-based operation N Part 3 | Part 1 | Part 2 _:
Web services | Storage I UDDI
identification ~of Web services management
description

presented in Section 3.1. It is now refined as follows: service name (i.e., identifier),
service type (internal or external), UDDI-registry identifier with regard to the master
cluster where the service is announced as internal (this is extremely important for
invocation purposes), UDDI-registry identifier with regard to a certain cluster from
where the information on the service has been collected, outcomes of announcement
policies (e.g., list of UDDI registries where a service cannot be announced), and extra
details for selection purposes as providers have services in common (e.g., service
execution-cost). The description of a Web service announcement that a user-agent
caches is specified as a WSDL file.

When a user moves to a new coverage area, her mobile device is automatically
assigned to a new mobile support station so, the device can remain reachable in terms
of receiving/submitting incoming/outgoing calls/messages. It should be noted that the
wireless cell of each mobile support station has an identifier, which is periodically
broadcasted to the mobile devices within the cell. When a user-agent that runs
on a mobile device detects a new identifier, it checks the last time it interacted
with the UDDI registry that has this cell’s identifier. If the user-agent has a new
description of Web services compared to the previous interactions it had with the
UDDI-agent of this UDDI registry, a decision to transfer this description is made.
This transfer is subject to a positive verification of the different provider-, user-,
and UDDI registry-defined policies. User-agents comply with the provider and user-
defined policies (i.e., where to submit), whereas UDDI-agents comply with the
UDDI registry-defined policies (i.e., from whom to accept).

In addition to the various policies that are integrated into the messenger-based op-
eration, a UDDI-agent accepts announcements from messengers if-and-only-if they
do not contradict the previously-made announcements. In case of contradictions, the
UDDI-agent takes various measures such as discarding an announcement or holding
up an announcement for further investigation. A contradiction could happen because
the information that messengers transport can be subject to alteration (Section 4). In
what follows, we provide a succinct list of contradictions using illustrative examples.
In Fig. 7, WS and P stand for Web service and provider, respectively. In addition,
contradictions are in italic.

The dots in the announcements correspond to the extra details that go along with
these announcements such as the outcomes of policies, the execution cost of a service,
and the reputation of a service.

1. Anannouncement makes a reference to a non-existing UDDI registry. We recall
that the UDDI registries are aware of their mutual existence.

2. An announcement sent from a user-agent to an UDDI registry contains in-
formation on a Web service (e.g., type) that is different from the information
stored in this UDDI registry. However both information are collected from the
same UDDI registry. In Fig. 7a, announce,; contradicts announce,, since there
is a difference at the level ofi the service type. Announce,; and announce,, are

@ Springer

J Intell Inf Syst (2007) 28:105-131 115

A)
UDDI;:
Master side: Announceq;(WSy, Ps)
Slave side: null
UDDI,:
Master side: Announces; (WSy, Py)
Slave side: Announceo (WS, intermal, P, UDDI;, UDDIy, ---)
Announceys (WSy, external, Py, UDDI;, UDDIq, ---)
B)
UDDI;:

Master side: null
Slave side: Announces; (WSy, external, P;, UDDI3, UDDI,, ---)

Fig. 7 Examples of contradictory announcements

respectively made by user-agent; and user-agent,, whereas announce;; is made
by provider-agent, of provider;.

3. Anannouncement on an external service refers to a provider in a UDDI registry
even though this provider did not announce in this UDDI registry. Figure 7b
illustrates this type of contradiction; there is no announcement from provider-
agent; of provider; in the master side of UDDI registry;. Announces; is made
by user-agents.

When a UDDI-agent receives an announcement on a Web service, it checks first
the type of the service. For a service of type internal, which means being posted by a
provider, the UDDI-agent registers it within its UDDI registry. For a service of type
external, which means being posted by a user-agent, the UDDI-agent checks if this
service is already registered. If needed, new records to store announcements on Web
services are created.

During the interaction sessions occurring between user-agents and UDDI-agents,
several obstacles hinder the reliability and continuity of these sessions. While we
provide solutions to some of the obstacles, others are challenging and require further
investigation.

— Because a UDDI-agent of a UDDI registry deals with several user-agents, the
UDDI-agent can easily become a single point-of-failure or a bottleneck for
the registry. To address this obstacle, we suggest associating each new user-
agent with a slave-agent that a UDDI-agent dynamically creates. A slave-agent
receives announcements on services of type external, checks them according to
the policies of the UDDI registry to whom these announcements are designated,
checks them out to avoid contradictions, and finally updates the registry. Once
the update of the UDDI registry is successfully completed, the slave-agent is
automatically destroyed.

— It is known that wireless communications are less reliable than wired commu-
nications_and thus, can be subject to frequent and unforeseen disconnections.
A disconnection may happen while a user-agent is transferring a content to a
UDDI-agent. A solution consists of repeating the transfer a certain number of

@ Springer

116 J Intell Inf Syst (2007) 28:105-131

times subject to sending an acknowledgment message from the UDDI-agent to
the user-agent.

— By default a user is mobile, which means she is not restricted to any specific
location. While our solution to the UDDI-registry dynamic management takes
advantage of the fact that users are mobile, this mobility has a side effect on
the messenger-based operation. Indeed, when a transfer of information is being
conducted between a user-agent and a UDDI-agent through a certain mobile
support station, the user may suddenly decide to move to a different location,
which is outside the coverage area of the current mobile support station. The
decision of user to move has several consequences. For instance, the user-agent
may not have had enough time to complete its transfer of information to the
UDDI-agent. Therefore, the UDDI registry is not updated. How to handle this
scenario requires further investigation.

The following running scenario is an example of the messenger-based operation.
John is ready for his summer vacation and needs to do some preparation work such
as booking a room in a hotel. After John submits his needs to his user-agent, the user-
agent interacts with the UDDI-agent so the relevant Web services can be identified,
composed according to a specific specification,? and finally triggered. Because most
of mobile of devices are “to a certain extent” resource constrained, we propose that
all the operations of satisfying needs of users take place at the level of the UDDI
registry. Afterwards the results (e.g., name of hotel and flight bookings) of these
operations are returned back to the user-agent prior to triggering the appropriate
Web services as recommended by the UDDI-agent. Further, additional details are
provided to the user-agent so it can prepare a description of the Web services
that participated in the satisfaction of John’s needs. Before the user-agent stores
this description, it checks whether the Web services can be posted in other UDDI
registries using the provider-defined policies, and interacts with John to see if he
agrees on announcing these Web services too. John may not wish to reveal the
Web services that were used for satisfying her summer-plan request for privacy
reasons. The interaction with users aims at defining the user-defined policies for the
requirement of announcing Web services in other UDDI registries. More details on
a similar scenario are given in Section 5.

Several constraints hinder the process of satisfying users’ needs including the non-
availability and the non-reliability of the information on the Web services of type
external. In the third part of the messenger-based operation, because providers will
definitely have services in common, the identification of the best services whether
internal or external relies on selection criteria such as execution time, execution cost,
and reputation. To explain the non-availability and the non-reliability constraints,
we assume that the mobile device of a user is managed by a certain mobile support
station, which refers to a certain UDDI registry. When the user-agent submits its
request of service retrieval to the UDDI-agent of the current UDDI registry, the
following cases may happen:

3For themeedsiof ot fesearchion'Webisetvicesywe use service chart diagrams for the specification
of the composition process (Maamar, Benatallah, & Mansoor, 2003), but this aspect is beyond this
paper’s scope.

@ Springer

J Intell Inf Syst (2007) 28:105-131 117

Information non-availability case: In the response that the UDDI-agent returns to
the user-agent, one or several Web services required in satisfying its needs lack.
In fact, the UDDI-agent may not have yet received the announcements on these
Web services in its UDDI registry due to probably (a) the various announcement
policies that prevent user-agents in posting Web services on this registry, or (b) the
routes of users who didn’t pass by the coverage area of the mobile support station
of this UDDI registry. Even if the Web services that lack are announced in other
UDDI registries, this does not help satisfy the needs of users.

Information non-reliability case: In the response that the UDDI-agent returns to the
user-agent, all the Web services required in satisfying needs are identified. Among
them, one or several services are of type external. When the time of triggering
the services of type external comes, these services may not be available. Their
respective providers have decided to withdraw the services for some maintenance
work. This withdrawing event is only noticed in the UDDI registry of the master
cluster (i.e., services announced as internal). This is not the case with the UDDI
registries of the slave clusters that believe the services are still available. As a part
of the solution to this problem, when services, whether internal or external, are
announced, their availability periods can be indicated.

Despite that a provider submits its announcements of Web services of type
internal to only one UDDI registry, this provider can track the announcements on
its services now of type external at least in a part of the existing UDDI registries.
Being aware of where the services are being posted may help the providers ensure
a better QoS of their services in terms of availability and reliability. In fact, when
a provider through its provider-agent receives a SOAP-based request to execute
a service, the information on the UDDI registry, which has recommended this
service can be extracted from the request. We recall that the trustworthiness value
of a provider towards a UDDI registry is based on the number of requests the
provider receives to perform services vs. the number of requests that are successfully
performed (Fig. 2).

4 Security of UDDI registries

In the current operation mode of the dynamic management of the UDDI registries,
connections between messengers and UDDI-agents are of type wireless (Fig. 1).
Thus, the reliability of these connections has an impact on the efficiency of the
information transfer to the UDDI-registries. For security reasons, the information
has to be encrypted to avoid any alteration. In addition, this way of interacting with
a UDDI registry assumes that the UDDI-agent can handle all the update requests
that sometimes arrive at the same time from multiple messengers. A UDDI-agent
can easily become a single point-of-failure or a bottleneck when a large number of
users are under the management of the mobile support station that identifies the
UDDI-agent.

To _deal with _the reliability of UDDI-agents and the efficiency of the update
requests, we already overviewed in Section 3.2 a solution, which consists of deploying
slave-agents. Another solution that calls for more security measures is presented as

@ Springer

118 J Intell Inf Syst (2007) 28:105-131

follows and consists of two elements: enable user-agents to create mobile delegate-
agents,* and deploy a reception platform at the level of each mobile support station.
The role of the reception platform is to receive delegate-agents after their transfer
from mobile devices. Before delegate-agents undertake the update of the content of
an UDDI registry, they need to be controlled for various reasons as it is going to
be discussed throughout this section. Security-agents of the reception platforms take
care of the control. Once the update of an UDDI registry is completed, a delegate-
agent is automatically destroyed.

As part of our general security-strategy, we discuss the mechanisms that de-
tect malicious delegate-agents. For instance, the content of an UDDI registry can
be altered by accepting announcements on non-existing services. We stated in
Section 3.1 that security is one of the elements that motivate a provider to give-up
from posting its services on an UDDI registry. Protecting the delegate-agents from
the attacks of UDDI-agents is also important. However, this is "less" serious since
delegate-agents are destroyed once they complete their operations. It is observed in
Mandry, Pernul, and Rohm (2000-2001); Varadharajan and Foster (2003) that not
only hosts have to be protected from malicious components, but also components
from malicious hosts. Our security strategy for protecting UDDI registries includes
three mechanisms: certificate verification, dynamic security-stack pool monitoring,
and malicious-pattern database analysis. The first mechanism is featured by a static
and dynamic analysis, whereas the remaining mechanisms are featured by a dynamic
analysis.

4.1 Certificate verification mechanism

Initially, a user-agent creates a delegate-agent and associates it with a certificate. A
certificate is generated by a certification authority and defines the actions a delegate-
agent is going to perform. A certificate has a key role in our security strategy.
Indeed, it is a commitment of what the delegate-agent is supposed to execute from
the user-agent to the UDDI-agent. Any deviation from the behavior as indicated in
the certificate constitutes a violation of the commitment and triggers for example
an access denial to a resource. The corrective measures to take mostly depend on
the severity of the violation. Before allowing a delegate-agent to perform actions,
a verification of its certificate is conducted. The outcome of this verification is
a classification of the security threats that originate from the delegate-agent. We
classify the threats into three levels: normal, suspicious, and dangerous. By default,
the security threat is set to normal. If the verification of a certificate confirms that
the delegate-agent is malicious, then the security threat is adjusted to suspicious. A
sample of the counter-measures against this threat is to block the delegate-agent by
preventing the execution of its actions.

Figure 8 is a sample of a behavior specification that is included in a certificate.
A certificate analysis relies on a database of malicious patterns. This database stores
the potential threats to the resources of an environment of Web services. Each threat
is identified with a pattern. The content of this database varies from one system to

4Severaliindicatorsiback thenimpressiverdevelopment happening in the field of mobile devices in
terms of performance, storage capacity, and functionality (Abowd et al., 2005; Wieland, 2003; Yunos,
Gao, & Shim, 2003).

@ Springer

J Intell Inf Syst (2007) 28:105-131 119

OpenFile(x).Read(x).SendNetWork(x)

Fig. 8 Sample of a behavior specification stored in a certificate

another depending on the security priorities that are set for example by end-users.
OpenFile(x).Read(x).SendNetWork(x) could constitute a malicious pattern if
x is a secret file that is being attempted to be read and even worse to be sent through
the network. Since this pattern appears in the certificate of Fig. 8, the security-agent
increases the threat level from normal to suspicious. Another malicious pattern could
be While(Exp).do Call f(). Depending on the value of Exp, an infinite loop may
occur. An infinite loop may block resources preventing therefore, other actions from
being executed. It should be noted that we are not detecting statically infinite loops.
Instead, if this pattern is identified after checking the delegate-agent’s certificate, the
threat level is increased from normal to suspicious. Moreover, a preventive dynamic
measure could be taken. For instance, a bound on the resource use allows to deny
dynamically a malicious delegate-agent from causing a denial of service. Figure 8
outlines a sample of a behavior specification stored in a certificate.

While the control of delegate-agents before their actions are executed is inter-
esting, this control is not suitable for detecting threats that depend on dynamic
information such as run-time context of a function to be called. In what follows, we
discuss the second type of mechanism that our security strategy integrates.

4.2 Security stack-pool monitoring mechanism

The analysis of a behavior specification may not be enough since some called
functions are only known during run-time. To deal with this limitation, we use
a security stack-pool mechanism, which is a simplified version of the Java stack
inspection approach (Wallach, Balfanz, Dean, & Felten, 2003). The objective is to
monitor the functions by checking if a function has the right to call another one.
The security-agent performs this check. At the top level of the stack, the delegate-
agent’s main functions are listed with their respective rights that enable accessing
some specific resources. These rights are identified in a precedent authentication step
that may use for example a light-authentication protocol such as KSSL (V. Gupta &
S. Gupta, 2001). A function is allowed to access a resource if-and-only-if the functions
it calls have the rights to access this resource. Figure 9 illustrates the security stack-
pool monitoring mechanism. In this figure, F; is a function that a delegate-agent

Fig. 9 Example of security 2. Rights verification for SSP
stack-pool use

Delegate-agent Security-agent

1. Access request tp R
R, <= Main functions (e
3. Accept/Deny tequest
aabil
: Reception platform

Stack pool
@ Springer

120 J Intell Inf Syst (2007) 28:105-131

Fig. 10 Validation algorithm Input Fi,Fy,-,F,,R
for a resource request of access e o
Get the security context of R
If F; in the security context does not
have the right to access R
Then Deny access request to R
Else Call check rules()

triggers, and R; is the right of this function F;. F; has the right to access a resource R
if this is possible through its respective right R; or through the rights of the functions
that F; calls.

4.3 Malicious-pattern database analysis mechanism

In Fig. 9, the security-agent of the reception platform decides whether a delegate-
agent has the right to access a resource. To make this decision, two elements are
required: a continuous monitoring of the functions that a delegate-agent invokes,
and a verification of the security context of a resource R. A security context has the
following format: (F; — F, — --- — F,) ¢ R where F; is a function called, R is a
resource (e.g., data, file), — is a calling operation between functions, and e is an
access request to the resource. The security context of a resource R is checked each
time an access request to that resource is submitted. The final decision to grant or
deny the access to a resource R is based on the algorithm of Fig. 10.

Check_rules() is a function that uses the database of malicious patterns. The
function guarantees that the actions to be performed before granting the right to
access the resource R do not constitute a malicious attack. Otherwise, the request of
access is denied.

In order to check if a sequence of primitive actions (i.e., no functions called) is
not malicious, a database of malicious patterns is used. The security-agent controls
both the security context of the resource that is being requested for access and the
primitive actions that a called function is going to perform. For illustration purposes,
we consider two primitive actions a and b. When a function plans to perform a then b,
the security agent checks if @ - b does not constitute a malicious pattern (- represents
a sequence of actions). To this end, the security-agent consults the database of
malicious patterns.

Malicious patterns are detected using execution traces and data-security levels.
Data are labelled with security levels such as public, shared, and secret. A malicious
pattern is specified by one or several rules. Each rule states why a called function
is malicious. Figure 11 is an example of a specification rule: Read (x) -Send (x) is a

Fig. 11 Example of a

specification rule of Read-Send is a malicious pattern iff

a malicious pattern Read: read z
Send: send x
X :'secret

@ Springer

J Intell Inf Syst (2007) 28:105-131 121

malicious pattern if-and-only-if Read is an action of reading a secret data x and Send
is an action of sending out the same secret data x over the network.

The use of the three mechanisms namely certificate verification, security stack-
pool mechanism, and database of malicious patterns depends on how much safe
the delegate-agent is judged. If the delegate-agent is considered to come from a
trustworthiness source,’ then the certificate verification is sufficient. Otherwise, the
other mechanisms are used. It is important to mention that these mechanisms require
more computing resources but at the same time offer a better confidence in the
security actions.

4.4 Learning malicious attacks

The security context of resources allows registering the malicious sequence of actions
that threaten their safety. However, it would not be possible to collect in advance all
the possible threats and store them in the malicious-pattern database. This database
can be gradually enriched with new patterns either manually or automatically. At
this time, we are adopting the manual way as the automatic one presents several
challenges that we plan to address in the future. The security context of a resource
contains the history of the different function calls. After a possible attack, the
administrator of an UDDI registry reviews the security context. The objective is to
extract the malicious sequence of actions by backtracking the security-stack pool.
The administrator is assisted in her job with a dedicated tool when she stores the
specification of an attack.

5 Implementation of the messenger approach

A proof-of-concept implementation of the messenger approach for the dynamic
management of the UDDI registries is underway. The prototype uses Sun’s Java
Web Services Developer Pack 1.5 (Java WSDP 1.5), which is an integrated
toolkit for building, testing, and deploying Web Services (java . sun.com/jwsdp).
Java WSDP comes with an implementation of an UDDI registry, which we inte-
grate into our implementation. For the client side, we use Sun’s J2ME Wireless
Toolkit, which provides an implementation of the Java 2 Micro Edition (J2ME)
(java.sun.com/j2me). We have chosen to deploy our prototype on handheld
wireless devices such as Palm Pilots running PalmOS. That was motivated by the fact
that an access to wireless carrier equipments for testing purposes was not guaranteed.
The setup of this prototype environment is as follows:

— Three 802.11 b wireless LANSs are installed to cover an area of 100 m by 300 m.

— One UDDI registry is installed within the range of each wireless LAN.

— Users are equipped with PD As, which are equipped with a wireless access card to
connect to the LANs, have the MIDP4Palm implementation installed on them.
MIDP4Palm is a J2ME-based Java runtime environment for PalmOS devices.

2Making a judgment on the trustworthiness ofia source can be done off-line.

@ Springer

122 J Intell Inf Syst (2007) 28:105-131

5.1 Running scenario

Initially a number of Web services are developed and registered with different UDDI
registries. The UDDI-agent is implemented as a Java-based server that interacts with
the UDDI registry and with user-agents. A user-agent is implemented as a networked
MIDlet that can send messages across the network. Figure 12 presents multiple
screen shots of the proof-of-concept. Our running scenario is a user who needs a
print service that would allow her to find the closest printer. The steps that outline
the messenger approach are as follows:

1. The user downloads and installs a MIDlet interface that allows her to interact
with the UDDI registries and providers as well. Both are spread across different
mobile support stations.

2. Once the MIDlet interface is installed (Fig. 12a), this allows the user to search
for a Web service within a specific category, e.g., Mobile Office.

3. Afterwards, the user-agent communicates with the UDDI-agent within its wire-
less range in order to search for the Web services in the Mobile Office cate-
gory (Fig. 12b).

4. If the search is successful, the UDDI-agent transfers a list of Web services
to the user-agent so the user can select the appropriate service for example
PrintService (Fig. 12c).

5. After the user-agent stores a description on PrintService, arequest triggering
that service is submitted from the user-agent to the provider of this service so a
search for printers within close proximity to the user is carried out. The outcome

LA Zyl_ijbl

J Intell Inf Syst (2007) 28:105-131 123

of this search is a list of printers from which the user selects one (Fig. 12d). The
user may now remotely access the printer by clicking on the file to be sent out
for printing.

6. Once the user has finished using PrintService, the user-agent checks if the
UDDI registry and the respective provider of PrintService allow the posting
of this service in other UDDI registries. If yes, the user-agent checks with the
user whether she too agrees on publishing PrintService in other UDDI
registries (Fig. 12e).

5.2 Performance evaluation

As mentioned earlier, the environment we used for experimentation consisted of
three 802.11 b wireless LANs covering an area of 100 m by 300 m. We used three
UDDI registries and eight users. Users were moving at various speeds; the speed
of the users varied between 1 m/s (the user is walking slowly) and 5 m/s (the user
is running). We have evaluated the performance of our solution using two types of
evaluations:

— The average number of messages for registration, discovery, and copying of
service descriptions. This criterion helps examine the communication overhead
of the proposed solution in terms of the number of messages used for registering
advertisements into UDDI registries by service providers, discovering services,
and messages between user-agents and UDDI-agents to synchronize UDDI
registries.

— Ratio of successful service discovery. This shows the probability for a user to
discover a desired service and the probability that user-agents successfully copy
services from one UDDI registry into another. This measure will demonstrate
the efficiency of the proposed solution. We calculate the ratio by taking the
number of successful service discoveries for a device and dividing it by the total
number of discovery attempts.

To capture the effect that multiple users and UDDI registries have on the
system, UDDI registries periodically receive advertisements and respond to service
discovery requests. And, users periodically make service discovery requests, and
their agents communicate with UDDI agents to register services. Based on the
experiments, we found that: (a) the communication overhead increases as the

Fig. 13 Message Message Overhead
communication overhead 9
o N
. , /
5 6 /
] %
3 s
=
5 4
2 s
g A
2 2 /
1 <
0 :
0 1 2 3 4 5 6

Speed (Meters/Second)

@ Springer

124 J Intell Inf Syst (2007) 28:105-131

Fig. 14 Successful service Successful Discovery Ratio

discovery rate 1
0,9 ~
Ovs \
N
\

0.7
06
05
04 \\\\-,
03
02
01

Ratio of Successful Discovery

0 1 2 3 4 5 6
Speed (Meters/Second)

number of users and their mobility increase. In addition, the number of users is
more dominant factor in increasing the overhead especially when the users are highly
mobile since their user-agents will attempt to discover UDDI registries (Fig. 13); and
(b) the success ratio is higher in the case of a user moving at a slow speed, and it
deteriorates faster when the user is running at the maximum speed (5 m/s) as shown
in Fig. 14. This is so when users are leaving one ad hoc network and joining another.

6 Future work

The integration of messengers into the dynamic management of UDDI registries
opens up the opportunity of conducting further research in the future. We identified
two initiatives. The first one uses the features of ad-hoc networking to support the
dynamic management of UDDI registries. And the second one embeds contextual
information into UDDI registries and messengers. We detail the first initiative and
briefly present the second initiative.

6.1 Support of ad-hoc networking to messengers

An ad-hoc (or "spontaneous") network is a local area network or other small
network, especially one with wireless or temporary plug-in connections, in which
some of the network devices (sometimes mobile) participate in the network only
for the duration of a communication session, or because some devices are in close
proximity so a communication session can take place.

According to Ishibashi and Bouataba (2005), mobile devices in a mobile ad-
hoc network have a different role than in a conventional local-area network. In
this latter type of network, communications are centered around base stations. The
infrastructure up to a base station is mostly fixed, so the topology is stable. Some
elements of Fig. 1 are a good illustration of this type of network and have to a
certain extent framed the operation of messengers. In an ad-hoc network, mobile
devices act not only as end-systems, but also as routing devices. In the following, we
aim at looking into the value-added of motivating messengers to engage in ad-hoc
collaboration. We first, discus the rationale of this collaboration and the challenges it
faces and second, present the appropriate mechanisms we envision for carrying out
this collaboration.

@ Springer

J Intell Inf Syst (2007) 28:105-131 125

The mutual awareness of messengers enables emerging an ad-hoc network upon
which mechanisms for conducting collaboration operate. As a prerequisite to this
collaboration, it is assumed first, that messengers have obtained the necessary
authorizations to collaborate from their respective users and second, that messengers
are in the vicinity of each other. Currently routes of users and policies limit the
messengers in their exchange of service descriptions with UDDI registries. This
exchange can be boosted by allowing messengers to collect further descriptions from
their peers. It is expected that this collection does not violate the multiple policies,
which frame the operation of the messengers.

In Fig. 1, the current scenario for data management among distributed UDDI
registries highlights a messenger that conveys information that are related to a single
user. The scenario that is targeted through the ad-hoc collaboration is to enable
messengers to convey information that are related to multiple users. In Fig. 15,
messengers; » 3 are in the vicinity of each other and constitute an ad-hoc network. Af-
ter exchanging information, each messenger possesses now information on the other
two messengers in terms of service descriptions. For example messenger; can now
post additional service descriptions on an UDDI registry and these descriptions are
of two types, those by default associated with user; and those associated with users; ».
Links between users’ mobile devices are formed within direct communication range,
and devices and links combine to create the network topology. During the lifetime
of an ad-hoc network, messengers may move around within the network, altering the
topology by creating or breaking links between devices. In addition messengers may
also enter or leave the network.

Multiple aspects need to be investigated when messengers are engaged in ad-hoc
collaboration including:

1. What are the mechanisms that need to embed users’ mobile devices, so that
messengers can detect the opportunity of collaborating independently of the
opportunity of detecting their vicinity?

2. What are the steps that messengers perform once they agree on collaborating,
what are the steps to conduct in order to join/leave an existing ad-hoc collabo-
ration of messengers without disrupting the information exchange, and what are
the incentives for example for joining in such a network and sharing descriptions
of Web services?

Fig. 15 $upport of ad-hoc Messengerl Messenger,
ye.t\.vo.rkmg to messengers +user | -y g user , +
nitiative '

: Ad hoc network |
Cluster, | \\ / :Clusterz

S
eb Web
serv1ces services
N____~

Legend
7a o) “~. Service desciption
UDDI-agent @ User-agent (‘\ _ exchange - -> Announcement

@ Springer

Messenger,

126 J Intell Inf Syst (2007) 28:105-131

3. Is there a need to distinguish the description of a Web service, which is
directly submitted to UDDI registries (Messenger;; UDDI-Registry) vs. the
description of a Web service, which is indirectly submitted to UDDI registries
(Messenger; , --- ,— Messenger;: UDDI-Registry)?

4. How to control/limit the number of participation of messengers in an ad-hoc col-
laboration, what are the reasons of this control, and how to avoid the overloading
of messengers with regard to their computing and storage capacities?

5. What are the benefits in terms of just to cite a few performance and efficiency that
ad-hoc collaboration caters to the flow of service description between messengers
and UDDI registries?

6.2 Context into UDDI registries and messengers

Brézillon defines in context as the information that characterizes the interaction
between humans, applications, and the surrounding environment. Many researchers
have attempted defining context using examples. For instance, Schilit, Adams,
and Want (1994) decompose in context into three categories: computing context
(e.g., network connectivity, communication cost), user context (e.g., user’s profile,
location), and physical context (e.g., lighting, noise levels).

Our initiative on embedding contextual information into messengers and UDDI
registries is motivated by the fact that different factors can contextualize the informa-
tion exchange, which is expected to occur between UDDI registries and messengers.
Among these factors, we cite location of exchange, period of exchange, and violation
of policies. Because of the contextual information that will embed UDDI registries
and messengers, several types of questions can be handled such as which messengers
are attached to which UDDI registry? What services is a messenger submitting
to a UDDI registry? And, what routes has a messenger passed by? We plan
defining two types of context (Fig. 16): U /M-context standing for context of UDDI
registry/context of messenger.

Managing contextual information becomes crucial in mobile computing scenar-
ios. In such scenarios, it was suggested to split contextual information into three
levels (Bellur & Narendra, 2005): environmental level: enables defining the overall

Fig. 16 Context into UDDI Legend
registries and messengers Messenger W
initiative Q @
user + Vo o)
UDDI-agent
\ AN £
Announg\ements @ User-agent
Yoo
%
N U-context
UDD
Web
services

Cluster of Web services

@ Springer

J Intell Inf Syst (2007) 28:105-131 127

environmental context like types of mobile devices, locations, and weather condi-
tions; service level: models and manages the context surrounding individual services
offered over mobile devices; and resource level: presents the context of the resources
on which the services are to operate.

7 Related work

Scenarios where people while on the move electronically interact with their sur-
rounding environment have been reported in José, Moreira, and Rodrigues (2003);
Ratsimor, O., Joshi, A., Finin, and Yesha (2003). This backs our solution of getting
users transparently involved in various operations among them the update of UDDI
registries. An interesting use of mobile devices is reported in Parikh (2005). Mobile
devices permitted supporting the training of people who live in rural areas in India
through low-cost information services. These people are not knowledge workers, do
not use modern information technology resources, and would like maximal utility
from computing devices with minimal engagement (using for example software
agents to act on their behalf). By understanding the needs of users and their mobility
patterns, it would be possible to first, offer customized services and second, take
advantage of these patterns to engage users in various operations. Kim and Kotz
(2005) have aimed in at classifying the mobility of users using the argument that
providing QoS services requires predicting user mobility. Our work is at the crossing
point of several research initiatives on Web services, UDDI registry, and wireless.
While these concepts are being independently studied (except for Web services and
UDDI), we aim at their combination in the same framework. In what follows, we
discuss the most related initiatives to our.

In Valavanis, Ververidis, Vazirgiannis, Polyzos, and Norvag (2003), MobiShare
project provides a middleware system for offering ubiquitous connectivity to mobile
devices. A mobile device is seen as a source of services, a requestor of services,
or both. By service, it is meant in MobiShare the data that devices decide to
publicly make available. Data availability depends on the status (on/off) and location
(dependent on the coverage area) of a device. While in MobiShare the devices can
act as providers of services, our devices have a different role. Indeed they help
announce the services of providers in different locations (i.e., UDDI registries).
Users make announcements on behalf of providers is seen as a “favor” and not as
a “commitment.”

Service announcement and availability are another difference between our work
and MobiShare. In MobiShare, each time a device moves from cell A (similar to a
cluster) to cell B, the whole description of the services in the device moves also from
cell A to cell B. A copy of this description remains in cell A, with a mention that
the device is off-line (since it is outside the coverage area of cell A). Therefore, the
description of the services is the same in cell A and cell B. In our work, the content of
the UDDI registries after announcing services may be different for various reasons:
each cluster has its own policy for accepting announcements of Web services from
devices, each provider of services has the opportunity to decide where to announce
its services, each user decides. if he would like to volunteer as a messenger, and the
number of users that transit by the coverage area of a cluster so they can make
announcements. To conclude our comparison, a service in MobiShare can become

@ Springer

128 J Intell Inf Syst (2007) 28:105-131

unavailable because a device is no longer accessible from a certain cell. In our
work the availability of the services does not depend on devices. A decision on the
availability of a service strictly goes back to providers.

In DBGlobe project, the aim is the development of data and metadata man-
agement techniques to deal with the challenge of global computing using a data-
centric approach (Karakasidis & Pitoura, 2002). DBGlobe considers mobile entities
as primary data stores and broadens the data management focus to address various
issues such as mobility, autonomy, and scalability. To make data widely available,
DBGlobe relies on chained hierarchies of directories. In case of an unsatisfied
request at the level of a directory, the request is forwarded to a higher geographical
authority. In our work, there are neither authorities nor hierarchies. All Web services
clusters are put at the same level. Furthermore, clusters are totally independent in
managing their respective UDDI registry.

In the eNcentive project (Ratsimor et al., 2003), peer-to-peer electronic mar-
keting in mobile ad-hoc environments is studied. eNcentive employs an intelligent
marketing scheme, by providing users the capacity to collect information like sales
promotions and discounts. The marketing scheme relies on users who propagate
promotions and discounts to other users with same interests and preferences in
the network. Users participating in eNcentive take advantage of circulating broadly
announcements since businesses that originally issued the announcements reward
the active distributors with additional promotions and other compensations. Several
commonalities exist between eNcentive and messenger projects. First, we both
promote the idea of getting users actively engaged in information disseminating oper-
ations, independently of the information type. While users in eNcentive interact with
each other, users in the messenger project primarily interact with UDDI registries,
and if permitted with other users as discussed in Section 6.1. We recall that different
types of policies regulate the interactions in the messenger project. Second, we both
consider agents as a major concept in the design and development of our respective
systems. Last but not least, we both are concerned with the issues of privacy and
trustworthiness. In spite of these similarities, we strengthen the complexity of the
operations that take place in the messenger project, as the aim of these operations
is to support the content management of distributed UDDI-registries, whereas in
eNcentive the aim of the operations is to do some information broadcasting.

The Wireless environment of Web services that is analyzed in this paper has
several common features with those of peer-to-peer environments. Indeed, there
is no-centralized component that is in charge of managing and coordinating the
UDDI registries. In addition, all the UDDI registries have equivalent capabilities
and responsibilities in terms of accepting the announcements of Web services
and satisfying the retrieval requests of Web services. Because the communication
infrastructure that is deployed in this paper is of type wireless, the flooding solution
was abandoned and the use of messengers was promoted. This contradicts what is
happening in peer-to-peer environments as observe in Castano, Ferrara, Montanelli,
Pagani, Rossi (2003). The solutions proposed for content retrieval in peer-to-peer
environments often exploit either flooding or broadcasting to disseminate the queries
when the precise located of a searched content is unknown.

Finally, Verma et al. (2003) observed that the new version of the UDDI specifi-
cationgrecognizesythesneed,fortheexistence of multiple registries and the need for
interactions among them. They noted that the challenge of dealing with hundreds

@ Springer

J Intell Inf Syst (2007) 28:105-131 129

of registries (if not thousands) during service publication and discovery becomes
critical. Inline with the possibility of running several UDDI registries, Budak Arpinar
et al. noted that using emergent peer-to-peer computing techniques a single UDDI
registry can be moved from its centralized nature to a distributed one (Budak
Arpinar, Aleman-Meza, Zhang, & Maduko, 2004). This can allow service providers
to select any particular registry in which their Web services would be listed. It
happens for instance that competitors do not to be listed in the same registry.

8 Conclusion

In this paper, we presented our research on the dynamic management of several
UDDI registries deployed on top of a wireless environment of Web services. Our
solution has relied on the fact that users are mobile as well as on the latest
developments happening in the field of mobile devices (more storage capacity,
more computing resources, and more advanced features). To manage the content
of the UDDI registries, different types of policies have been put forward stating for
example where to announce, what to announce, and what to accept. These policies
have allowed considering several aspects in the announcement of Web services such
as security, privacy, and trustworthiness. Because of the wireless communication
infrastructure connecting the UDDI registries, a flooding-based solution has been
discarded. Acting as messengers, users and their agents support the exchange of
content between the UDDI registries.

References

Abowd, G., Iftode, L., & Mitchell, H. (2005). The smart phone: A first platform for pervasive
computing (Guest editors’ introduction). IEEE Pervasive Computing, 4(2), 18-19. (April-June)

Bagci, F., Petzold, J., Trumler, W., & Ungerer, T. (2003). Ubiquitous mobile agent system in a
P2P-network. In Proceedings of the System Support for Ubiquitous Computing Workshop at the
Fifth Annual Conference on Ubiquitous Computing (UbiComp’2003), Seattle, Washington. Berlin
Heidelberg New York: Springer.

Bellavista, P., Corradi, A., & Stefanelli, C. (2002). The ubiquitous provisioning of internet services
to portable devices. IEEE Pervasive Computing, 1(3), 81-87. (July/September)

Bellur, U., & Narendra, N. C. (2005). Towards service orientation in pervasive computing systems.
In Proceedings of the International Conference of Information Technology Code and Comput-
ing(ITCC’2005), Las Vegas, USA, (pp-. 289-295). Washington, DC: IEEE Computer Society.

Benatallah, B., Sheng, Q. Z., & Dumas, M. (2003). The Self-Serv environment for web services
composition. [EEE Internet Computing, 7(1), 40-48. (January/February)

Brézillon, P. (2003). Focusing on context in human-centered computing. /EEE Intelligent Systems,
18(3), 62-66. (May/June)

Budak Arpinar, I., Aleman-Meza, B., Zhang, R., & Maduko, A. (2004). Ontology-driven web ser-
vices composition platform. In Proceedings of the IEEE International Conference on E-commerce
Technology (CEC’2004) San Diego, USA(pp. 146-152). Washington, DC: IEEE Computer
Society.

Casati, F., Shan, E., Dayal, U., & Shan, M.-C. (2003). Business-oriented management of web services.
Communications of the ACM, 46(10), 55-60. (October)

Castano, A., Ferrara, S., Montanelli, S., Pagani, E., & Rossi, G. P. (2003). Ontology-addressable
contents in P2P networks. In Proceedings of the First Workshop on Semantics in Peer-to-peer
and Grid Computing heldvin Conjunctionwith| the Twelfth International World Wide Web Con-
ference (WWW’2003) Budapest, Hungary (pp- 55-68). New York, NY: ACM.

@ Springer

130 J Intell Inf Syst (2007) 28:105-131

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., & Weerawarana, S. (2002). Unraveling
the web services web: An introduction to SOAP, WSDL, and UDDI. /[EEE Internet Computing,
6(2), 86-93. (March/April)

Gupta, V., & Gupta, S. (2001). KSSL: Experiments in wireless internet security. Technical report,
Sun Microsystems, SMLI TR-2001-103.

Hristova, N., O’Hare, G. M. P., & Lowen, T. (2003). Agent-based ubiquitous systems: 9 lessons
learnt. In Proceedings of the System Support for Ubiquitous Computing Workshop at the Fifth
Annual Conference on Ubiquitous Computing (UbiComp’2003) Seattle, Washington. Berlin Hei-
delberg New York: Springer.

Huhns, M. (2002). Agents as web services. [EEE Internet Computing, 6(4), 93-95.(July/August)

Ishibashi, B., & Bouataba, R. (2005).Topology and mobility considerations in mobile ad hoc net-
works. In Ad Hoc Networks Journal. (Elsevier)(in press)

Jennings, N., Sycara, K., & Wooldridge, M. (1998). A roadmap of agent research and development.
Autonomous Agents and Multi-agent Systems, 1(1), 7-38. (Kluwer Academic Publishers)

José, R., Moreira, A., & Rodrigues, H. (2003). The AROUND architecture for dynamic location-
based services. Mobile Networks and Applications, 8(4), 377-387. (Kluwer Academic Publishers)

Karakasidis, A., & Pitoura, E. (2002). DBGlobe: A data-centric approach to global computing. In
Proceedings of the 22nd International Conference on Distributed Computing Systems Workshops
(ICDCSW’2002) Vienna, Austria(pp. 735-740). Washington, DC: IEEE Computer Society.

Kim, M., & Kotz, D. (2005). Classifying the mobility of users and the popularity of access
points. In Proceedings of the International Workshop on Location-and Context-awareness
(LoCA’2005) held in conjunction with the Third International Conference on Pervasive Com-
puting(PERVASIVE’2005) X Munich, Germany(pp. 19-24). Berkeley, CA: USENIX.

Kuno, H., & Sahai, A. (2002). My agent wants to talk to your service: Personalizing web services
through agents. Technical Report HPL-2002-114, HP Laboratories, Palo Alto, CA USA.

Maamar, Z., Ben-Younes, K., & Al-Khatib, G. (2003). Scenarios of supporting mobile users in
wireless networks. In Proceedings of the Second International Workshop on Wireless Information
Systems (WIS°2003) held in conjunction with the 5th International Conference on Enterprise
Information Systems (ICEIS’2003) Angers, France (pp. 12-20). Angers, France: ICEIS.

Maamar, Z., Benatallah, B., & Mansoor, W. (2003). Service chart diagrams—Description & ap-
plication. In Proceedings of the Alternate Tracks of the Twelfth International World Wide Web
Conference (WWW’2003) Budapest, Hungary. New York, NY: ACM.

Mandry, T., Pernul, G., & Rohm, W. R. (2000-2001). Mobile agents on electronic markets—
Opportunities, risks, agent protection. International Journal of Electronic Commerce, 5(2), 47.
(Winter).

Parikh, T. S. (2005). Using mobile phones for secure, distributed document processing in the devel-
opment world. IEEE Pervasive Computing, 4(2), 74-81. (April-June)

Penserini, L., Liu, L., Mylopoulos, J., Panti, M., & Spalazzi, L. (2003). Cooperation strategies for
agent-based P2P systems. Web Intelligence and Agent Systems: An International Journal, 1(1),
3-21. (I0S Press)

Ratsimor, O., Joshi, A., Finin, T., & Yesha, Y. (2003). eNcentive: A framework for intelligent mar-
keting in mobile peer-to-peer environments. In Proceedings of the 5th International Conference
on Electronic Commerce (ICEC’2003) Pittsburgh, PA, USA(pp. 87-94). New York, NY: ACM.

Schilit, B., Adams, N., & Want, R. (1994). Context-aware computing applications. In Proceedings
of the IEEE Workshop on Mobile Computing Systems and Applications, Santa Cruz, California,
USA(pp. 85-90). Washington, DC: IEEE Computer Society.

uddi.org. UDDI Technical White Paper. http://www.uddi.org/,(2000). (Visited August 2003).

Valavanis, E., Ververidis, C., Vazirgiannis, M., Polyzos, G. C., & Norvag, K. (2003). MobiShare:
Sharing context-dependent data & services from mobile sources. In Proceedings of the 2003
IEEE/WIC International Conference on Web Intelligence (WI'2003) Halifax, Canada (p. 263).
Washington, DC: IEEE Computer Society.

Varadharajan, V., & Foster D. (2003). A security architecture for mobile agent-based applications.
World Wide Web: Internet and Web Information Systems, 6(1). (Kluwer)

Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., & Miller, J. (2003). METEOR-
S WSDI: A scalable infrastructure of registries for semantic publication and discovery of web
services. Journal of Information Technology and Management, 6(1), 17-39. (also appeared as
Technical Report 03-006, LSDIS Lab, Computer Science Department, University of Georgia,
February.2003).

@ Springer

http://www.uddi.org/

J Intell Inf Syst (2007) 28:105-131 131

Wallach, D., Balfanz, D., Dean, D., & Felten, E. (2003). Understanding java stack inspection. In
IEEE Symposium on Security and Privacy, Oakland, California, USA(pp. 52-63). Washington,

DC: IEEE Computer Society.
Wieland, K. (2003). The long road to 3G. International Telecommunications Magazine, 37(2).

(February)
Yunos, H. M., Gao, J. Z., & Shim, S. (2003). Wireless advertising’s challenges and opportunities.

IEEE Computer, 26(5), 30-37. (May)

@ Springer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manharaa.com

	Dynamic management of UDDI registries in a wireless environment of web services: Concepts, architecture, operation, and deployment
	Abstract
	Introduction and motivation
	Preliminaries
	Agentification of a wireless environment of web services
	Agent-based deployment
	Messenger-based operation

	Security of UDDI registries
	Certificate verification mechanism
	Security stack-pool monitoring mechanism
	Malicious-pattern database analysis mechanism
	Learning malicious attacks

	Implementation of the messenger approach
	Running scenario
	Performance evaluation

	Future work
	Support of ad-hoc networking to messengers
	Context into UDDI registries and messengers

	Related work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

